๐ Chapters
SLM vs LLM MODEL
โ๏ธ By MONU | 11/18/2025
which AI model is best for you?
Iโve
explained both in simple steps below.
๐ฆ๐๐ (๐ฆ๐บ๐ฎ๐น๐น ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น)
(๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ)
Lightweight
AI models built for speed, focus, and on-device execution.
1. ๐๐ฒ๐ณ๐ถ๐ป๐ฒ ๐๐ฝ๐ฒ๐ฐ๐ถ๐ณ๐ถ๐ฐ ๐ด๐ผ๐ฎ๐น โ Set a narrow and clear purpose for
the model.
2. ๐๐ผ๐น๐น๐ฒ๐ฐ๐ ๐๐ฎ๐ฟ๐ด๐ฒ๐๐ฒ๐ฑ ๐ฑ๐ฎ๐๐ฎ โ Gather only the most relevant
training examples.
3. ๐๐ฎ๐ป๐ฑ๐ฝ๐ถ๐ฐ๐ธ ๐๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด ๐๐ฎ๐บ๐ฝ๐น๐ฒ๐ โ Use curated, high-quality data for
accuracy.
4. ๐๐ถ๐บ๐ถ๐ ๐ธ๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ ๐๐ฐ๐ผ๐ฝ๐ฒ โ Focus learning on one domain or
task type.
5. ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฒ ๐๐ฟ๐ฎ๐ถ๐ป๐ถ๐ป๐ด ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐ โ Fine-tune parameters for fast,
efficient learning.
6. ๐๐ผ๐บ๐ฝ๐ฟ๐ฒ๐๐ ๐ฎ๐ป๐ฑ ๐ฟ๐ฒ๐ณ๐ถ๐ป๐ฒ ๐บ๐ผ๐ฑ๐ฒ๐น โ Shrink size to run smoothly on
devices.
7. ๐๐ป๐ฎ๐ฏ๐น๐ฒ ๐ฒ๐ฑ๐ด๐ฒ-๐ฏ๐ฎ๐๐ฒ๐ฑ ๐ฒ๐
๐ฒ๐ฐ๐๐๐ถ๐ผ๐ป โ Deploy directly on phones or small
systems.
8. ๐๐ป๐๐๐ฟ๐ฒ ๐น๐ผ๐ ๐น๐ฎ๐๐ฒ๐ป๐ฐ๐ โ Generate instant, real-time
responses for users.
9. ๐๐ฒ๐น๐ถ๐๐ฒ๐ฟ ๐๐ฎ๐๐ธ-๐ฑ๐ฟ๐ถ๐๐ฒ๐ป ๐ผ๐๐๐ฝ๐๐ โ Produce short, accurate,
goal-specific results.
_____________________________________________
๐๐๐ (๐๐ฎ๐ฟ๐ด๐ฒ ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น)
(๐ด๐ต๐ฆ๐ฑ-๐ฃ๐บ-๐ด๐ต๐ฆ๐ฑ)
Powerful AI
systems trained on massive, multi-domain data for deeper reasoning.
โข ๐ฆ๐ฒ๐ ๐ฏ๐ฟ๐ผ๐ฎ๐ฑ ๐ด๐ผ๐ฎ๐น โ Tackle open-ended and complex
language problems.
โข ๐๐ผ๐น๐น๐ฒ๐ฐ๐ ๐บ๐ฎ๐๐๐ถ๐๐ฒ ๐ฑ๐ฎ๐๐ฎ โ Gather diverse text from global
sources online.
โข ๐๐ฒ๐ฎ๐ฟ๐ป ๐ฎ๐ฐ๐ฟ๐ผ๐๐ ๐ฑ๐ผ๐บ๐ฎ๐ถ๐ป๐ โ Build understanding across many
topics and fields.
โข ๐ง๐ฟ๐ฎ๐ถ๐ป ๐๐ถ๐๐ต ๐ฝ๐ผ๐๐ฒ๐ฟ โ Use extensive GPUs for long
training cycles.
โข ๐๐ฑ๐ฑ ๐ฑ๐ผ๐บ๐ฎ๐ถ๐ป ๐ณ๐ผ๐ฐ๐๐ โ Fine-tune for specialized areas
like law or health.
โข ๐๐ผ๐๐ ๐ผ๐ป ๐ฐ๐น๐ผ๐๐ฑ โ Requires scalable and powerful
remote servers.
โข ๐๐ป๐ฎ๐ฏ๐น๐ฒ ๐ฝ๐ฎ๐ฟ๐ฎ๐น๐น๐ฒ๐น ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด โ Distribute work across multiple
compute nodes.
โข ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ฒ ๐ฐ๐ฟ๐ฒ๐ฎ๐๐ถ๐๐ฒ ๐ผ๐๐๐ฝ๐๐๐ โ Produce context-rich and flexible
responses.
โข ๐๐๐ผ๐น๐๐ฒ ๐๐ถ๐๐ต ๐ณ๐ฒ๐ฒ๐ฑ๐ฏ๐ฎ๐ฐ๐ธ โ Improve accuracy and reasoning
over time.
_____________________________________________
๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฎ๐น ๐ง๐ฟ๐ฎ๐ฑ๐ฒ๐ผ๐ณ๐ณ๐
โข ๐๐ผ๐๐: SLM low โ โ LLM high
โข ๐ฆ๐ฝ๐ฒ๐ฒ๐ฑ: SLM very fast โ โ LLM slower
(network + compute)
โข ๐๐ฐ๐ฐ๐๐ฟ๐ฎ๐ฐ๐ ๐ผ๐ป ๐ป๐ฎ๐ฟ๐ฟ๐ผ๐ ๐๐ฎ๐๐ธ: SLM high โ โ LLM good (but
sometimes overkill)
โข ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐น ๐ธ๐ป๐ผ๐๐น๐ฒ๐ฑ๐ด๐ฒ & ๐ฐ๐ฟ๐ฒ๐ฎ๐๐ถ๐๐ถ๐๐: SLM limited โ โ LLM strong
โข ๐ฃ๐ฟ๐ถ๐๐ฎ๐ฐ๐: SLM better โ โ LLM riskier unless
secured
๐ช๐ต๐ถ๐ฐ๐ต ๐ผ๐ป๐ฒ ๐ถ๐ ๐ฏ๐ฒ๐๐ ๐ณ๐ผ๐ฟ ๐๐ผ๐๐ฟ ๐ฏ๐๐๐ถ๐ป๐ฒ๐๐?
๐ง๐ฎ๐๐ธ: Simple/repetitive โ ๐ฆ๐๐ | Complex/creative โ ๐๐๐
๐ฅ๐๐ป: On-device/offline โ ๐ฆ๐๐ | Cloud OK โ ๐๐๐
๐ฆ๐ฝ๐ฒ๐ฒ๐ฑ: Instant โ ๐ฆ๐๐ | Slower OK โ ๐๐๐
๐๐๐ฑ๐ด๐ฒ๐: Low โ ๐ฆ๐๐ | High โ ๐๐๐
๐ฃ๐ฟ๐ถ๐๐ฎ๐ฐ๐: Must stay local โ ๐ฆ๐๐ | Managed data OK โ ๐๐๐
๐ฌ Comments
Comments (0)
No comments yet. Be the first to share your thoughts!